Treatment for cancer with magnetic nano-particles which can be transported in liquids into the body.

A cancer treatment with magnetic nanoparticles, which can be transported in liquids into the body.

H. Christoph/ullstein bild via Getty Images

When I told my friends and colleagues that I would be writing on nanotechnology for our September Futurography course, a few were bemused. “You mean like tiny robots?” one asked with a smirk. “I didn’t think that stuff was real.”

My friend was referring primarily to the speculative pop-science of K. Eric Drexler, most of all to his 1986 book Engines of Creation, which imagined a future of minuscule machines that would be able to rebuild reality from raw atomic matter. While those ideas were widely mocked by researchers—perhaps most notably by the Nobel Prize–winning chemist Richard Smalley—they’ve continued to influence the way many perceive nanotechnology, which mostly deals with the manipulation of supersmallmatter.

Or so I thought. Calling up a handful of researchers—working in fields ranging from synthetic biology and molecular communication to nanofabrication and computer engineering—I was surprised to find that they mostly deal with more quotidian misconceptions. Simply put, the real trouble, as Michael Khbeis, director of the Washington Nanofabrication Facility, is that “people just don’t have a clue what nanotechnology is.”

A handful of factors contribute to that confusion, not least of which is that nanomaterials can be hard to define and their effects can be difficult to predict. To really grasp what’s at stake when we’re talking about nanotechnology, however, it’s still important to know what it’s not. With that in mind, here are six of the misconceptions that the researchers I spoke to identified. It may not cure yournanofatigue, but hopefully it will help clear the fog a little.


No comments

Be the first one to leave a comment.

Post a Comment