• How Materials that Compute Recognize a Number Pattern

    SOURCE

    August, 2016

    (Nanowerk News) The potential to develop “materials that compute” has taken another leap at the University of Pittsburgh’s Swanson School of Engineering, where researchers for the first time have demonstrated that the material can be designed to recognize simple patterns. This responsive, hybrid material, powered by its own chemical reactions, could one day be integrated into clothing and used to monitor the human body, or developed as a skin for “squishy” robots.“Pattern recognition for materials that compute”, published today in the AAAS journal Science Advances, continues the research of Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering, and Steven P. Levitan, the John A. Jurenko Professor of Electrical and Computer Engineering. Co-investigators are Yan Fang, lead author and graduate student researcher in the Department of Electrical and Computer Engineering; and Victor V. Yashin, Research Assistant Professor of Chemical and Petroleum Engineering.

    This is a conceptual illustration of pattern recognition process performed by hybrid gel oscillator system. (Image: Yan Fang)The computations were modeled utilizing Belousov-Zhabotinsky (BZ) gels, a substance that oscillates in the absence of external stimuli, with an overlaying piezoelectric (PZ) cantilever. These so-called BZ-PZ units combine Dr. Balazs’ research in BZ gels and Dr. Levitan’s expertise in computational modeling and oscillator-based computing systems.”BZ-PZ computations are not digital, like most people are familiar with, and so to recognize something like a blurred pattern within an image requires nonconventional computing,” Dr. Balazs explained. “For the first time, we have been able to show how these materials would perform the computations for pattern recognition.

    “Dr. Levitan and Mr. Fang first stored a pattern of numbers as a set of polarities in the BZ-PZ units, and the input patterns are coded through the initial phase of the oscillations imposed on these units. The computational modeling revealed that the input pattern closest to the stored pattern exhibits the fastest convergence time to the stable synchronization behavior, and is the most effective at recognizing patterns. In this study, the materials were programmed to recognize black-and-white pixels in the shape of numbers that had been distorted.Compared to a traditional computer, these computations are slow and take minutes. However, Dr. Yashin notes that the results are similar to nature, which moves at a “snail’s pace.”

    “Individual events are slow because the period of the BZ oscillations is slow,” Dr. Yashin said. “However, there are some tasks that need a longer analysis, and are more natural in function. That’s why this type of system is perfect to monitor environments like the human body.”For example, Dr. Yashin said that patients recovering from a hand injury could wear a glove that monitors movement, and can inform doctors whether the hand is healing properly or if the patient has improved mobility. Another use would be to monitor individuals at risk for early onset Alzheimer’s, by wearing footwear that would analyze gait and compare results against normal movements, or a garment that monitors cardiovascular activity for people at risk of heart disease or stroke.Since the devices convert chemical reactions to electrical energy, there would be no need for external electrical power.

    This would also be ideal for a robot or other device that could utilize the material as a sensory skin.”Our next goal is to expand from analyzing black-and-white pixels to grayscale and more complicated images and shapes, as well as to enhance the devices storage capability,” Mr. Fang said. “This was an exciting step for us and reveals that the concept of “materials that compute” is viable.”The research is funded by a five-year National Science Foundation Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE) grant, which focuses on complex and pressing scientific problems that lie at the intersection of traditional disciplines.

    “As computing performance technology is approaching the end of Moore’s law growth, the demands and nature of computing are themselves evolving,” noted Sankar Basu, NSF program director. “This work at the University of Pittsburgh, supported by the NSF, is an example of this groundbreaking shift away from traditional silicon CMOS-based digital computing to a non-von Neumann machine in a polymer substrate, with remarkable low power consumption. The project is a rare example of much needed interdisciplinary collaboration between material scientists and computer architects.”

    Source: University of Pittsburgh
    Click Here!

    Read more: ‘Materials that compute’ advances as engineers demonstrate pattern recognition

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    2017 Update on obstetrics

    These experts discuss the practical clinical implications of new society recommendations for antenatal steroid administration, low-dose aspirin for preeclampsia prevention,... Read more →

    Latest Video

     
     

    LATEST POSTS

    Glaucoma gene therapy on positive trajectory using CRISPR-Cas9

    SOURCE May 02, 2016 Seattle—Results from a series of preclinical studies are providing proof of principle that gene targeting using…

    Mark Bertolini: The new definition of Quality in Healthcare is Convenience

      “… in studying the healthcare system we know one thing: the cheapest place to provide care is in the…

    Gentle Bot: 3D printing a robot with feelings

      3D printing is enabling strong advances in the field of soft robotics. New research from Cornell University has created robotic hands…

    Multiregional brain on a chip

     SOURCE (Nanowerk News) Harvard University researchers have developed a multiregional brain-on-a-chip that models the connectivity between three distinct regions of…

    2017 Update on obstetrics

    These experts discuss the practical clinical implications of new society recommendations for antenatal steroid administration, low-dose aspirin for preeclampsia prevention,…

    Stem cells grow cartilage to fix hips

    A 3D scaffold has been molded into the precise shape of a hip joint. The scaffold is covered with cartilage…

    Tool predicts if prostate cancer will return after surgery

    SOURCE A tool that analyzes the expression patterns of four genes might help doctors predict if prostate cancer will reoccur…

    New way of imaging eyes could spot glaucoma sooner

    SOURCE A new imaging technique has given researchers the first look at individual cells at the back of the eye…