• The news has been full of stories about new advancements in 3D printed tissue. Companies such as Organovo and research institutions such as theUniversity of California San Diego are leading the charge in the development of 3D printed, functional human tissue, particularly liver tissue. So far, printed tissue is being used mostly for pharmaceutical drug testing, but everyone in the 3D printing biosphere professes the ultimate goal of eventually producing whole, fully functional human organs that can be transplanted into patients. Most experts agree that it will happen; it’s just a matter of when.

    It’s also a matter of who. The race to be the first to 3D print a transplantable human organ is an intense one, and Wake Forest Baptist Medical Center may have just pulled into the lead. Regenerative medicine researchers at the North Carolina hospital have announced that they have printed ear, bone and muscle structures and successfully implanted them into animals. The structures, after being implanted, matured into functional tissue and sprouted new systems of blood vessels, and their strength and size mean that they could feasibly be implanted into humans in the future.

    atala

    Dr. Anthony Atala

    “We make ears the size of baby ears. We make jawbones the size of human jawbones,” said Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine (WFIRM). “We are printing all kinds of things.”

    Dr. Atala has long been a major player in the field of regenerative medicine. In 2006 his lab made history by growing and implanting a bladder into a human patient – the first time such a feat had ever been accomplished. He and his team have been developing the Integrated Tissue and Organ Printing System (ITOP) over the past decade. The system involves a custom-designed 3D printer that utilzes a water-based ink optimized to promote the health and growth of encapsulated cells, which are printed in alternating layers with biodegradable plastic micro-channels that act as passages for nutrients. Unlike other bioprinting methods, ITOP prints the cells and the scaffolds simultaneously, according to Dr. Atala.

     

    “This novel tissue and organ printer is an important advance in our quest to make replacement tissue for patients,” he said. “It can fabricate stable, human-scale tissue of any shape. With further development, this technology could potentially be used to print living tissue and organ structures for surgical implantation.”

    printedearWake Forest’s research has been largely funded by the Armed Forces Institute of Regenerative Medicine, a military organization working to develop regenerative treatments for severely injured soldiers. The development of transplantable, 3D printed tissue could obviously benefit both military personnel and civilians, though – according to the United Network for Organ Sharing, over 121,000 Americans are currently on the waiting list for an organ transplant. The ITOP system could eliminate waiting lists altogether with “made to order” organs custom-designed for individual patients based on MRI and CT scans.

    We’re still years away from that, but it’s been five months since 3D printed bone fragments were implanted into rats, and the tissue is still thriving inside the rodents’ bodies. One of the biggest challenges in bioprinting so far has been getting printed tissue to survive long enough to form blood vessels and nerves and otherwise fully integrate with the body in which it is implanted, so this study is incredibly promising. You can access the study here. Discuss these new advances in the 3D Printed Tissue forum over at 3DPB.com.

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    2017 Update on obstetrics

    These experts discuss the practical clinical implications of new society recommendations for antenatal steroid administration, low-dose aspirin for preeclampsia prevention,... Read more →

    Latest Video

     
     

    LATEST POSTS

    Glaucoma gene therapy on positive trajectory using CRISPR-Cas9

    SOURCE May 02, 2016 Seattle—Results from a series of preclinical studies are providing proof of principle that gene targeting using…

    Mark Bertolini: The new definition of Quality in Healthcare is Convenience

      “… in studying the healthcare system we know one thing: the cheapest place to provide care is in the…

    Gentle Bot: 3D printing a robot with feelings

      3D printing is enabling strong advances in the field of soft robotics. New research from Cornell University has created robotic hands…

    Multiregional brain on a chip

     SOURCE (Nanowerk News) Harvard University researchers have developed a multiregional brain-on-a-chip that models the connectivity between three distinct regions of…

    2017 Update on obstetrics

    These experts discuss the practical clinical implications of new society recommendations for antenatal steroid administration, low-dose aspirin for preeclampsia prevention,…

    Stem cells grow cartilage to fix hips

    A 3D scaffold has been molded into the precise shape of a hip joint. The scaffold is covered with cartilage…

    Tool predicts if prostate cancer will return after surgery

    SOURCE A tool that analyzes the expression patterns of four genes might help doctors predict if prostate cancer will reoccur…

    New way of imaging eyes could spot glaucoma sooner

    SOURCE A new imaging technique has given researchers the first look at individual cells at the back of the eye…