•  

    A microscopic image of doughnut-shaped microparticles

    SOURCE

    August, 2016

    (Nanowerk News) Some of the world’s most important discoveries – penicillin, vulcanized rubber and Velcro, to name a few – were made by accident. In fact, it’s been said that upward of half of all scientific discoveries are by chance.Add vortex ring freezing to that long list of “accidents.”Duo An, a doctoral student in the labs of both professor Dan Luo and assistant professor Minglin Ma, in the Department of Biological and Environmental Engineering, was an undergraduate from China doing an internship at Cornell when he stumbled upon a phenomenon that has the potential to greatly improve cell-free protein production and cell delivery, particularly for Type 1 diabetes patients.A group headed by Luo and Ma has published a paper in Nature Communications (“Mass production of shaped particles through vortex ring freezing”). An is lead author.

    A microscopic image of doughnut-shaped microparticles, made from silica nanoparticles through vortex ring freezing.Vortex rings are ubiquitous in nature – a mushroom cloud of smoke is one example – and the ring’s evolution exhibits a rich spectrum of complicated geometries, from spherical to teardrop to toroidal (doughnut-shaped). The researchers used these features to control and mass produce inorganic and organic particles via an electrospraying process, whereby a multitude of vortex ring-derived particles (VRPs) can be produced, then frozen at precise time points. The group reported they could produce 15,000 rings per minute via electrospraying.They found controlling the shape and speed of the spray, as well as the speed of the chemical reaction, can yield different structures.“We can tune both of these timescales, and control at which stage we can freeze the structure, to get the results we want,” An said.While working in Luo’s lab during a summer internship, An was making nanoclay hydrogels – injecting one solution into another to create a gel. But for this particular procedure, instead of direct injection, he dripped one solution into another. When the first solution entered the second, it created vortex-ring particles.It wasn’t until two years later, while working in Ma’s lab, that he recalled the vortex rings he’d created and wondered if that concept could be applied to Ma’s work with microcapsules and cell therapy. The Ma lab focuses on cell delivery for Type 1 diabetes patients.Ma admitted that the concept of using a doughnut-shaped encapsulation hadn’t occurred to him, but made perfect sense.“We knew the concept that a doughnut shape is better, but we never thought of making it until we saw it [from An],” Ma said.An advantage of the doughnut-shape encapsulation over a spherical-shaped one is shorter diffusion distance – the distance the encapsulated particle must travel to escape the capsule – while at the same time maintaining a relatively large surface area.This concept could pave the way for other as-yet-unknown applications of vortex ring freezing, according to Luo.“Our hope is that this type of material in these shapes can be used much more extensively in other labs for whatever they’re trying to do,” he said. “There is a whole field devoted to just particles, but by default, they are all thinking in terms of spherical particles. Hopefully, this will add to that field of study.”Ma, who earlier this year won a Hartwell Individual Biomedical Research Award for his work on juvenile diabetes, cited the work of collaborators Ashim Datta, professor of biological and environmental engineering, and Paul Steen, the Maxwell M. Upson Professor of Engineering in the Robert Frederick Smith School of Chemical and Biomedical Engineering. Datta’s lab did the simulation work, and Steen’s group provided key theoretical input.“Their contributions put this work on much more solid ground,” Ma said. “We now better understand the mechanism behind it, and can more purposefully design these particles in the future.”

    Read more: Vortex rings may aid cell delivery, cell-free protein production

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    Latest Video

     
     

    LATEST POSTS

    First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare

     SOURCE: FORBES The first FDA approval for a machine learning application to be used in a clinical setting is a…

    FDA-approved study uses adipose stem cells for treatment of shoulder injuries

    SOURCE Sanford Health is conducting the first clinical trial approved by the FDA to treat injured shoulders using patients’ adipose…

    Could Anatomics BioModel Stereotaxy replace navigation or a robot?

    SOURCE Paul S D’Urso Neurosurgeon & Founder of Anatomics Because 3D printing is so accurate I was able to locate…

    $250 million awarded to new Advanced Robotics Manufacturing Innovation Hub

    SOURCE Headquartered in Pittsburgh, PA, the new institute is made up of governments, industry, academia, and non-profit organizations from across the country….

    Self-assembling 3D printing inks produce more true-to-life tissue

    SOURCE Biological and chemical researchers are developing 3D printable inks capable of self-assembly, i.e. forming a shape based on a…

    Urine Exosomes – An Emerging Trove of Biomarkers

     SOURCE Exosomes are released by most cells and can be isolated from all biofluids including urine. Exosomes are small vesicles…

    What is machine learning?

    SOURCE In this fascinating animation from Oxford Sparks, we take a look at how statistics and computer science can be used to…

    Catalia Health uses social robots to improve health outcomes

    Credit: Catalia Health SOURCE Catalia Health is leading the surge in social robotics, with Mabu, their patient care management system. Catalia…