• A 32-face 3-D truncated icosahedron mesh

    SOURCE

    August, 2016

    (Nanowerk News) Designing a 3-D printed structure is hard enough when the product is inches or feet in size. Imagine shrinking it smaller than a drop of water, smaller even than a human hair, until it is dwarfed by a common bacterium.This impossibly small structure can be made a reality with focused electron beam induced deposition, or FEBID, to essentially 3-D print at the nanoscale. FEBID uses an electron beam from a scanning electron microscope to condense gaseous precursor molecules into a solid deposit on a surface.

    A 32-face 3-D truncated icosahedron mesh was created to test the simulation’s ability to precisely construct complex geometries. The SEM image of the final experimental product (left) was highly consistent with the structure predicted by the virtual SEM image (center) and the simulated design model (right).Previously, this method was laborious, prone to errors and impractical for creating complex structures larger than a few nanometers.

    Now, a team at the Department of Energy’s Oak Ridge National Laboratory, in collaboration with the University of Tennessee and the Graz University of Technology, has developed a powerful simulation-guided drafting process to improve FEBID and introduce new possibilities in nanomanufacturing (“Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition”).

    Team leader Jason Fowlkes, a research staff member at ORNL’s Center for Nanophase Materials Sciences, a DOE Office of Science User Facility, said the new system integrates design and construction into one streamlined process that creates complex 3-D nanostructures.Harald Plank, study co-author in Graz, Austria, said the ability to accurately design custom nanostructures “opens up a host of novel applications in 3-D plasmonics, free-standing nano-sensors and nano-mechanical elements on the lower nanoscale which are almost impossible to fabricate by other techniques.

    ”The process uses a 3-D simulation to guide the electron beam and replicate complex lattices and meshes between 10 nanometers and one micron in size. The model tracks electron scattering paths and the release of secondary electrons to predict the pattern of deposition on the surface of the material and visualize the final structure of an experiment.The innovative aspect of this work, according to Fowlkes, is the convergence of experiments and simulation.

    The simulation guides the experimental construction, while the completed experiments, in turn, provide feedback on the accuracy and strength of the simulation. Designs are fed into the simulation and drafting program, and any inconsistencies between the two caused by secondary electron activity can be caught before the experiment.“In its simplest form, once we know the emission profile of those secondary electrons we don’t want, we can design around them,” Fowlkes said.

    Computer simulation of the construction of a 250-nanometer 3-D cube by focused electron beam induced deposition. The electron beam (green cone) emits electrons (green lines) that interact with the precursor from the gas flux (grey arrow) to form solid deposits, simulated as pixels, on the substrate.While slower than other nanofabrication methods available in the clean room at CNMS, the FEBID process is the only one that can produce high-fidelity 3-D nanostructures,

    Fowlkes said. With no way to “see” the nanostructures during construction, researchers previously relied on trial and error, manually adjusting the build parameters to produce the desired shapes.Fowlkes said the team will now focus on fully purifying the structures of carbon contamination. The purification process, called in situ purification, removes the impurities during construction, using water or oxygen and a laser to liberate the residual carbon from the precursor and flush it out of the structure.

    The simulation can even incorporate the stresses of the carbon removal process and can anticipate the transformation in the final product.“We can design structures in a way where the actual writing pattern might look distorted, but that’s taking into account the fact that it’s going to retract and contract during purification and then it will look like the proper structure,” Fowlkes said.

     

    Source: Oak Ridge National Laboratory

    Read more: Researchers combine simulation, experiment for nanoscale 3-D printing (w/video)

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    Latest Video

     
     

    LATEST POSTS

    Engineers Have Created Biocompatible Microrobots That Can be Implanted Into the Human Body

    SOURCE  Sam Sia, a Biomedical Engineering Professor at Columbia Engineering recently led a team that used biomaterials that can safely…

    First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare

     SOURCE: FORBES The first FDA approval for a machine learning application to be used in a clinical setting is a…

    FDA-approved study uses adipose stem cells for treatment of shoulder injuries

    SOURCE Sanford Health is conducting the first clinical trial approved by the FDA to treat injured shoulders using patients’ adipose…

    Could Anatomics BioModel Stereotaxy replace navigation or a robot?

    SOURCE Paul S D’Urso Neurosurgeon & Founder of Anatomics Because 3D printing is so accurate I was able to locate…

    $250 million awarded to new Advanced Robotics Manufacturing Innovation Hub

    SOURCE Headquartered in Pittsburgh, PA, the new institute is made up of governments, industry, academia, and non-profit organizations from across the country….

    Self-assembling 3D printing inks produce more true-to-life tissue

    SOURCE Biological and chemical researchers are developing 3D printable inks capable of self-assembly, i.e. forming a shape based on a…

    Urine Exosomes – An Emerging Trove of Biomarkers

     SOURCE Exosomes are released by most cells and can be isolated from all biofluids including urine. Exosomes are small vesicles…

    What is machine learning?

    SOURCE In this fascinating animation from Oxford Sparks, we take a look at how statistics and computer science can be used to…