• Medical nanobots. ShutterstockSOURCEMarch 2016

    1. Doctors inside your body

    Wearable fitness technology means we can monitor our health by strapping gadgets to ourselves. There are even prototype electronic tattoos that can sense our vital signs. But by scaling down this technology, we could go further by implanting or injecting tiny sensors inside our bodies. This would capture much more detailed information with less hassle to the patient, enabling doctors to personalise their treatment.

    The possibilities are endless, ranging from monitoring inflammation and post-surgery recovery to more exotic applications whereby electronic devices actually interfere with our body’s signals for controlling organ function. Although these technologies might sound like a thing of the far future, multi-billion healthcare firms such as GlaxoSmithKline are already working on ways to develop so-called “electroceuticals”.

    2. Sensors, sensors, everywhere

    These sensors rely on newly-invented nanomaterials and manufacturing techniques to make them smaller, more complex and more energy efficient. For example, sensors with very fine features can now be printed in large quantities on flexible rolls of plastic at low cost. This opens up the possibility of placing sensors at lots of points over critical infrastructure to constantly check that everything is running correctly. Bridges, aircraft and even nuclear power plants could benefit.

    Worried about your hairline? Shutterstock

    3. Self-healing structures

    If cracks do appear then nanotechnology could play a further role. Changing the structure of materials at the nanoscale can give them some amazing properties – by giving them a texture that repels water, for example. In the future, nanotechnology coatings or additives will even have the potential to allow materials to “heal” when damaged or worn. For example, dispersing nanoparticles throughout a material means that they can migrate to fill in any cracks that appear. This could produce self-healing materials for everything from aircraft cockpits to microelectronics, preventing small fractures from turning into large, more problematic cracks.

    4. Making big data possible

    All these sensors will produce more information than we’ve ever had to deal with before – so we’ll need the technology to process it and spot the patterns that will alert us to problems. The same will be true if we want to use the “big data” from traffic sensors to help manage congestion and prevent accidents, or prevent crime by using statistics to more effectively allocate police resources.

    Here, nanotechnology is helping to create ultra-dense memory that will allow us to store this wealth of data. But it’s also providing the inspiration for ultra-efficient algorithms for processing, encrypting and communicating data without compromising its reliability. Nature has several examples of big-data processes efficiently being performed in real-time by tiny structures, such as the parts of the eye and ear that turn external signals into information for the brain.

    Computer architectures inspired by the brain could also use energy more efficiently and so would struggle less with excess heat – one of the key problems with shrinking electronic devices further.

    From nano tech to global warming. Shutterstock

    5. Tackling climate change

    The fight against climate change means we need new ways to generate and use electricity, and nanotechnology is already playing a role. It has helped create batteries that can store more energy for electric cars and has enabled solar panels to convert more sunlight into electricity.

    The common trick in both applications is to use nanotexturing or nanomaterials (for example nanowires or carbon nanotubes) that turn a flat surface into a three-dimensional one with a much greater surface area. This means that there is more space for the reactions that enable energy storage or generation to take place, so the devices operate more efficiently

    In the future, nanotechnology could also enable objects to harvest energy from their environment. New nano-materials and concepts are currently being developed that show potential for producing energy from movement, light, variations in temperature, glucose and other sources with high conversion efficiency.

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    Latest Video

     
     

    LATEST POSTS

    Chinese company Jala Group using 3D printed skin to test cosmetics for Asian market

    SOURCE Jala Group, a Chinese cosmetics company, has used 3D bioprinting technology to print artificial “Asian skin,” complete with dermis and…

    Historic HIV vaccine efficacy study underway in South Africa

    The first HIV vaccine efficacy study to launch anywhere in 7 years is testing whether an experimental vaccine safely prevents…

    When Pot Meets Pain and Insomnia: Why Many Fibromyalgia Patients Swear by Medical Marijuana

      Fibromyalgia is a painful condition that over three million Americans suffer from. It causes widespread muscle pain and tenderness…

    Nanoarray sniffs out and distinguishes multiple diseases

    SOURCE “Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules” ACS Nano Before modern…

    Cardiac stem cell infusion could be effective therapy for the most common type of heart failure

    SOURCE Cardiac stem cells could be an effective treatment for a common but difficult-to-treat type of heart failure, a new…

    Outer layer of human heart regrown using stem cells

    Human stem cells have been used to regenerate the cells that cover the external surface of a human heart(Credit: DarioStudios/Depositphotos) SOURCE…

    Gastrogenomic delights: A movable feast

    SOURCE The complete genome sequences of Escherichia coli and Helicobacter pylori provide insights into the biology of these species Recently,…

    Glaucoma gene therapy on positive trajectory using CRISPR-Cas9

    SOURCE May 02, 2016 Seattle—Results from a series of preclinical studies are providing proof of principle that gene targeting using…