• 1
    June 27, 2016
    Summary:Scientists have found preliminary evidence that tetrahydrocannabinol (THC) and other compounds found in marijuana can promote the cellular removal of amyloid beta, a toxic protein associated with Alzheimer’s disease.

    Salk Institute scientists have found preliminary evidence that tetrahydrocannabinol (THC) and other compounds found in marijuana can promote the cellular removal of amyloid beta, a toxic protein associated with Alzheimer’s disease.

    While these exploratory studies were conducted in neurons grown in the laboratory, they may offer insight into the role of inflammation in Alzheimer’s disease and could provide clues to developing novel therapeutics for the disorder.

    “Although other studies have offered evidence that cannabinoids might be neuroprotective against the symptoms of Alzheimer’s, we believe our study is the first to demonstrate that cannabinoids affect both inflammation and amyloid beta accumulation in nerve cells,” says Salk Professor David Schubert, the senior author of the paper.

    Alzheimer’s disease is a progressive brain disorder that leads to memory loss and can seriously impair a person’s ability to carry out daily tasks. It affects more than five million Americans according to the National Institutes of Health, and is a leading cause of death. It is also the most common cause of dementia and its incidence is expected to triple during the next 50 years.

    It has long been known that amyloid beta accumulates within the nerve cells of the aging brain well before the appearance of Alzheimer’s disease symptoms and plaques. Amyloid beta is a major component of the plaque deposits that are a hallmark of the disease. But the precise role of amyloid beta and the plaques it forms in the disease process remains unclear.

    In a manuscript published in June 2016’s Aging and Mechanisms of Disease, Salk team studied nerve cells altered to produce high levels of amyloid beta to mimic aspects of Alzheimer’s disease.

    The researchers found that high levels of amyloid beta were associated with cellular inflammation and higher rates of neuron death. They demonstrated that exposing the cells to THC reduced amyloid beta protein levels and eliminated the inflammatory response from the nerve cells caused by the protein, thereby allowing the nerve cells to survive.

    Preliminary lab studies by Salk Professor David Schubert suggest that the molecule THC reduces beta amyloid proteins in human neurons.
    Credit: Salk Institute

    “Inflammation within the brain is a major component of the damage associated with Alzheimer’sdisease, but it has always been assumed that this response was coming from immune-like cells in the brain, not the nerve cells themselves,” says Antonio Currais, a postdoctoral researcher in Schubert’s laboratory and first author of the paper. “When we were able to identify the molecular basis of the inflammatory response to amyloid beta, it became clear that THC-like compounds that the nerve cells make themselves may be involved in protecting the cells from dying.”

    Brain cells have switches known as receptors that can be activated by endocannabinoids, a class of lipid molecules made by the body that are used for intercellular signaling in the brain. The psychoactive effects of marijuana are caused by THC, a molecule similar in activity to endocannabinoids that can activate the same receptors. Physical activity results in the production of endocannabinoids and some studies have shown that exercise may slow the progression of Alzheimer’s disease.

    Schubert emphasized that his team’s findings were conducted in exploratory laboratory models, and that the use of THC-like compounds as a therapy would need to be tested in clinical trials.

    In separate but related research, his lab found an Alzheimer’s drug candidate called J147 that also removes amyloid beta from nerve cells and reduces the inflammatory response in both nerve cells and the brain. It was the study of J147 that led the scientists to discover that endocannabinoids are involved in the removal of amyloid beta and the reduction of inflammation.

    Other authors on the paper include Oswald Quehenberger and Aaron Armando at the University of California, San Diego; and Pamela Maher and Daniel Daughtery at the Salk Institute.

    The study was supported by the National Institutes of Health, The Burns Foundation and The Bundy Foundation.


    Story Source:

    The above post is reprinted from materials provided by Salk Institute. Note: Materials may be edited for content and length.


    Journal Reference:

    1. Antonio Currais, Oswald Quehenberger, Aaron M Armando, Daniel Daugherty, Pam Maher, David Schubert. Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. npj Aging and Mechanisms of Disease, 2016; 2: 16012 DOI:10.1038/npjamd.2016.12

    Cite This Page:

    Salk Institute. “Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells.” ScienceDaily. ScienceDaily, 29 June 2016. <www.sciencedaily.com/releases/2016/06/160629095609.htm>.
     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    Latest Video

     
     

    LATEST POSTS

    Engineers Have Created Biocompatible Microrobots That Can be Implanted Into the Human Body

    SOURCE  Sam Sia, a Biomedical Engineering Professor at Columbia Engineering recently led a team that used biomaterials that can safely…

    First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare

     SOURCE: FORBES The first FDA approval for a machine learning application to be used in a clinical setting is a…

    FDA-approved study uses adipose stem cells for treatment of shoulder injuries

    SOURCE Sanford Health is conducting the first clinical trial approved by the FDA to treat injured shoulders using patients’ adipose…

    Could Anatomics BioModel Stereotaxy replace navigation or a robot?

    SOURCE Paul S D’Urso Neurosurgeon & Founder of Anatomics Because 3D printing is so accurate I was able to locate…

    $250 million awarded to new Advanced Robotics Manufacturing Innovation Hub

    SOURCE Headquartered in Pittsburgh, PA, the new institute is made up of governments, industry, academia, and non-profit organizations from across the country….

    Self-assembling 3D printing inks produce more true-to-life tissue

    SOURCE Biological and chemical researchers are developing 3D printable inks capable of self-assembly, i.e. forming a shape based on a…

    Urine Exosomes – An Emerging Trove of Biomarkers

     SOURCE Exosomes are released by most cells and can be isolated from all biofluids including urine. Exosomes are small vesicles…

    What is machine learning?

    SOURCE In this fascinating animation from Oxford Sparks, we take a look at how statistics and computer science can be used to…