• 17The latest treatment is based on injecting the patient with a porous silicon material that has been absorbed with an anti-cancer drug Corbis


    June 2016

    Scientists believe technique could offer treatment for metastatic cancer of lungs and liver after successful tests on mice

    Scientists believe the technique could offer a treatment for metastatic cancer of the lungs and liver, two of the main causes of death for patients with a wide range of incurable cancers that have spread around the body.

    The researchers developed a method of delivering anti-cancer drugs to these vital organs using a “nanoparticle generator” that can bypass a tumour cell’s ability to develop drug resistance.

    Tests on mice with incurable breast cancer that has spread to the lungs shows that half of them were effectively cured of the disease after eight months of follow-up – equivalent to 24 years of long-term survival in humans.

    If the finding were to be replicated by other researchers, it would represent a new milestone in cancer therapy, coming just weeks after breakthroughs in cancer immunology where the body’s own immune defences were shown to be capable of launching an attack on spreading tumours.

    The latest treatment is based on injecting the patient with a porous silicon material that has been absorbed with an anti-cancer drug. After injection into the blood stream, the material is carried to the site of a tumour where the silicon breaks down to produce cancer-killing nanoparticles.


    Mauro Ferrari, the scientist who led the work at the Houston Methodist Research Institute in Texas, said that the results on mice are unprecedented and clinical trials on the first human patients could begin as early as next year, using a “nanoparticle generator” to improve the potency of existing anti-cancer drugs.

    “To my very best understanding, this is the first case we’ve ever seen of a therapy with a well understood mechanism that can provide long-term, disease-free survival of our pre-clinical animal populations,” Dr Ferrari said.

    “If this bears out in the clinical realm, even a short fraction in the preclinical experimentation that we did, it will be transformational. It will be the first ever demonstration of a cure of metastatic disease to the lungs,” he said.

    The study, published in the journal Nature Biotechnology, used a standard chemotherapy drug called doxorubicin. However, it was the drug-delivery mechanism, using nanotechnology, that produced the stunning results, he said. Nanotechnology refers to the science of extremely small things, and the approach has recently seen major breakthroughs in an array of scientific fields.

    “Lung and liver metastases are the two main reasons why we lose cancer patients. The results we have proven with this paper is that we can provide a functional cure; we can essentially cure long-term, [giving] disease-free survival for about 50 per cent of the animals that we provided this therapy to,” Dr Ferrari said.

    “Through understanding the mechanism we can begin to think about strategies that will work for the other 50 per cent as well,” he said.

    “If this research bears out in humans and we see even a fraction of this survival time, we are still talking about dramatically extending life for many years. That’s essentially providing a cure in a patient population that is now being told there is none,” he added.

    The nanoparticle generator effectively concentrates the anti-cancer drug within the tumour cells, leaving healthy cells untouched, which should avoid many of the toxic side-effect seen in patients treated conventionally. The nanoparticle polymer breaks down into single strands that curl up into nanoparticles. These are quickly absorbed by cancer cells and taken into the cell nucleus where the drug is released and the cell dies.

    The lead scientist in the research has hailed the unprecedented results on mice (PA)

    “This may sound like science fiction, like we’ve penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and release the drug particles at the site of the cellular nucleus,” Dr Ferrari said.

    “I would never want to overpromise to the thousands of cancer patients looking for a cure, but the data is astounding. We’re talking about changing the landscape of curing metastatic disease, so it’s no longer a death sentence,” he said.


    No comments

    Be the first one to leave a comment.

    Post a Comment



    Latest Posts

    Latest Video



    FDA-approved study uses adipose stem cells for treatment of shoulder injuries

    SOURCE Sanford Health is conducting the first clinical trial approved by the FDA to treat injured shoulders using patients’ adipose…

    Could Anatomics BioModel Stereotaxy replace navigation or a robot?

    SOURCE Paul S D’Urso Neurosurgeon & Founder of Anatomics Because 3D printing is so accurate I was able to locate…

    $250 million awarded to new Advanced Robotics Manufacturing Innovation Hub

    SOURCE Headquartered in Pittsburgh, PA, the new institute is made up of governments, industry, academia, and non-profit organizations from across the country….

    Self-assembling 3D printing inks produce more true-to-life tissue

    SOURCE Biological and chemical researchers are developing 3D printable inks capable of self-assembly, i.e. forming a shape based on a…

    Urine Exosomes – An Emerging Trove of Biomarkers

     SOURCE Exosomes are released by most cells and can be isolated from all biofluids including urine. Exosomes are small vesicles…

    What is machine learning?

    SOURCE In this fascinating animation from Oxford Sparks, we take a look at how statistics and computer science can be used to…

    Catalia Health uses social robots to improve health outcomes

    Credit: Catalia Health SOURCE Catalia Health is leading the surge in social robotics, with Mabu, their patient care management system. Catalia…

    Ambry Genetics’ Big Data Sharing Program Now Available for Public Download

    SOURCE (So, WHY is this important?  Sounds like good Hangout fodder for the person that wants to know!) January 19,…