•  97

    March, 2016

    Duke University scientists have given a pair of monkeys the ability to drive a wheelchair with their thoughts alone. The work is described in a paper recently published in the journal Scientific Reports and adds to a growing body of work in brain-machine interfaces aiming to return some freedom to the severely disabled.

    Duke neuroscientist Miguel Nicolelis and his team first began experimenting back in 2012, when they implanted hundreds of microfibers as thin as a human hair in the brains of two rhesus macaque monkeys. The fibers recorded cortical activity associated with “whole-body movement” and sent the signals to a computer.

    monkeys-wheelchairs-thought-controlled-6To start, the monkeys sat in wheelchairs that were moved along various paths toward a bowl of grapes across the room. Their brain activity was read and decoded by a computer program and then associated with wheelchair commands.

    Next, the monkeys were given control of the wheelchair. Over time they learned to steer it by thought alone—the implants sending their intentions to the computer, and the program recognizing and translating their thoughts into motion.

    “Our data shows that the wheelchair is being assimilated by the monkey’s brain as an extension of its bodily representation of itself,” Nicolelis says. “In essence the wheelchair is becoming a part of the monkey’s body.”

    This isn’t the first time brain implants have been used to control some external device. Nicolelis and his team have been working on brain-machine interfaces since 1999. Over the years, their monkeys have learned to control virtual arms, and their brains have even been linked together into a kind of organic, brain-network called a “brainet.”

    In other studies, monkeys controlled real robotic arms with their thoughts, and the BrainGate program has tested the technique in humans. Quadriplegic patients using BrainGate brain implants have learned to control robotic arms and perform simple but liberating tasks such as taking a sip of coffee from a bottle.

    The Duke study, however, is notable for a few reasons.

    Whereas prior experimentation in wheelchairs used joysticks in the training phase, this study shows joysticks aren’t necessary—an important finding if similar techniques are to be useful for paralyzed patients who can’t move their hands or arms.

    Other attempts to control wheelchairs have used non-invasive, electrode-studded EEG caps to record brain activity. But EEG readings taken from outside lack the detail of an internal brain implant. Of course, the downside of such implants is invasive surgery.

    Nicolelis and his team aimed to minimize these ill effects. Unlike other implants, which tend to be rigid, theirs are flexible, appear to cause less damage, and can better integrate into the brain. Further, they’re wireless, while other implants are tethered.

    Taken together, the implants pose less risk and can last longer—in this case, years instead of weeks or months—and Nicolelis says the monkeys remain quite healthy.

    monkeys-wheelchairs-thought-controlled-5What’s next? The research may move beyond wheelchairs.

    “We are not focused on the wheelchair—we’re actually developing robotic exoskeletons in parallel to this,”Nicolelis says. “But in principle, it could be any kind of vehicle because this is a general purpose approach.”

    Another goal is expanding the number of individual neurons (currently about 300) the implants can monitor. The team has reportedly shown the technique capable of monitoring up to 2,000 neurons. After that, they hope to move on to human trials.


    Banner image courtesy of Shutterstock.com

    Body images from “Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates,”Scientific Reports. CC-BY

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    Latest Video

     
     

    LATEST POSTS

    Engineers Have Created Biocompatible Microrobots That Can be Implanted Into the Human Body

    SOURCE  Sam Sia, a Biomedical Engineering Professor at Columbia Engineering recently led a team that used biomaterials that can safely…

    First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare

     SOURCE: FORBES The first FDA approval for a machine learning application to be used in a clinical setting is a…

    FDA-approved study uses adipose stem cells for treatment of shoulder injuries

    SOURCE Sanford Health is conducting the first clinical trial approved by the FDA to treat injured shoulders using patients’ adipose…

    Could Anatomics BioModel Stereotaxy replace navigation or a robot?

    SOURCE Paul S D’Urso Neurosurgeon & Founder of Anatomics Because 3D printing is so accurate I was able to locate…

    $250 million awarded to new Advanced Robotics Manufacturing Innovation Hub

    SOURCE Headquartered in Pittsburgh, PA, the new institute is made up of governments, industry, academia, and non-profit organizations from across the country….

    Self-assembling 3D printing inks produce more true-to-life tissue

    SOURCE Biological and chemical researchers are developing 3D printable inks capable of self-assembly, i.e. forming a shape based on a…

    Urine Exosomes – An Emerging Trove of Biomarkers

     SOURCE Exosomes are released by most cells and can be isolated from all biofluids including urine. Exosomes are small vesicles…

    What is machine learning?

    SOURCE In this fascinating animation from Oxford Sparks, we take a look at how statistics and computer science can be used to…