• 2

     

    SOURCE

    April 2016

    In a new Cell Reports paper, a team led by John P. Cooke, M.D., Ph.D., of the Houston Methodist Research Institute, has identified and characterized a biological factor critical to the transformation of adult somatic cells (cells that are not sperm or egg cells) into stem cells.

    “Think about the cartoon Transformers, where trucks and cars change into robots. We’re manipulating genes in the cell nucleus to produce specific proteins, changing the normal recipe for growth and maturation, and transforming into a new type of cell with the ability to morph into any other cell type,” said Cooke, senior author and chair of the Department of Cardiovascular Sciences.

    Called induced (iPSCs), these cells can be differentiated into any somatic cell type, making them a potentially valuable weapon against numerous diseases. Cooke and his colleagues discovered that reactive oxygen species (ROS, also known as oxygen-derived free radicals), play a critical role in nuclear reprogramming. Using a variety of methods to induce to become iPSCs, the researchers first found that in the early stages of reprogramming, the transformation was consistently accompanied by an increase in ROS generation.

    “When we used genetic tools to knock out the enzymes controlling ROS generation, or we tied up any generated ROS with antioxidants, we observed a marked reduction in iPSC colony formation,” said Cooke. “Conversely, the overproduction of ROS impaired stem cell formation, meaning that optimal iPSC production occurs within a ‘Goldilock’s zone’ of free radical generation—too little or too much and reprogramming shuts down.”

    Finally, the researchers discovered that ROS generation subsided as the iPSCs matured, and these mature stem cell colonies survive best in a cellular environment with low levels of ROS. This work is an extension of a 2012 paper in the journal Cell, where Cooke showed that the viruses used to deliver the reprogramming genes were more than just vehicles.

    “What we learned is that the viral vectors played a role in reprogramming. Their activation of innate immune signaling caused epigenetic changes that were absolutely necessary for the transformation of somatic cells into iPSCs,” explained Cooke, who holds the Joseph C. “Rusty” Walter and Carole Walter Looke Presidential Distinguished Chair in Cardiovascular Disease Research.

    Innate immune signaling is known to stimulate ROS production, which participates in cell defense. Cooke said the team is developing methods to manipulate innate immune signaling of ROS to maximize the production of iPSCs and better direct their differentiation.

    A better understand of the mechanism by which somatic cells are reprogrammed into is critical to ongoing work to understand and to treat disease. For example, one can take skin cells come from people with Alzheimer’s, revert them to iPSCs, and then differentiate them to neurons so that scientists can study that individual’s brain . Thus, iPSCs are useful in understanding different disease processes and might also be used to develop regenerative therapies.

     
     

    No comments

    Be the first one to leave a comment.

    Post a Comment


     

     

    Latest Posts

    2017 Update on obstetrics

    These experts discuss the practical clinical implications of new society recommendations for antenatal steroid administration, low-dose aspirin for preeclampsia prevention,... Read more →

    Latest Video

     
     

    LATEST POSTS

    Glaucoma gene therapy on positive trajectory using CRISPR-Cas9

    SOURCE May 02, 2016 Seattle—Results from a series of preclinical studies are providing proof of principle that gene targeting using…

    Mark Bertolini: The new definition of Quality in Healthcare is Convenience

      “… in studying the healthcare system we know one thing: the cheapest place to provide care is in the…

    Gentle Bot: 3D printing a robot with feelings

      3D printing is enabling strong advances in the field of soft robotics. New research from Cornell University has created robotic hands…

    Multiregional brain on a chip

     SOURCE (Nanowerk News) Harvard University researchers have developed a multiregional brain-on-a-chip that models the connectivity between three distinct regions of…

    2017 Update on obstetrics

    These experts discuss the practical clinical implications of new society recommendations for antenatal steroid administration, low-dose aspirin for preeclampsia prevention,…

    Stem cells grow cartilage to fix hips

    A 3D scaffold has been molded into the precise shape of a hip joint. The scaffold is covered with cartilage…

    Tool predicts if prostate cancer will return after surgery

    SOURCE A tool that analyzes the expression patterns of four genes might help doctors predict if prostate cancer will reoccur…

    New way of imaging eyes could spot glaucoma sooner

    SOURCE A new imaging technique has given researchers the first look at individual cells at the back of the eye…